

NOAA FISHERIES

Northwest Fisheries Science Center

9.0 Evolution and Life-History Overview

Jeff Hard and Robin Waples

May 6, 2015

What is life-history evolution?

- Genetic change in age & size at maturity, lifespan & reproductive investment, offspring number & quality, and the schedule and seasonal timing of these transitions
- A key objective is to understand how genetic diversity and natural selection influence fitness and resilience
- We combine genetic tools such as GWAS and pedigree reconstruction with tools from physiology and ecology: e.g., life cycle models, PVAs, and IPMs

Naish & Hard (2008)

Why is life-history evolution important?

- An organism's life history reflects the environmental factors it has adapted to in its natural habitat
- Abrupt, persistent life-history changes in response to selective pressures can affect productivity and viability

• Esvio lautice pata breat post laute to hel martion editate de se le titin en a resiste cete de significante de solution en solution ("Darwinian debt")

How is it relevant to protected species?

- Anthropogenic changes to ecosystems protected species depend upon are likely to change their life histories
- These changes reflect adaptations away from historical patterns forged by natural selection
- Changes may involve phenotypic plasticity (GxE) if cue is reliable
- Genetic changes can occur on time frames relevant to conservation and management

NOAA's life-history work on protected species

- Research at both Centers focuses on characterizing factors that influence life-history expression
- You'll hear about a variety of studies aimed at understanding key facets of salmonid life history
- Additional work at both Centers is examining other relevant topics in salmonid life history:
 - Genomics and epigenomics of life history strategies
 - Selection on size and phenology, reproductive success
 - Partial anadromy in Oncorhynchus mykiss
 - Plasticity in maturation, smoltification and migration
 - Variation in habitat use and migratory behavior

Geographic scope of NOAA's life-history work

- Research on salmon and steelhead life history at the Northwest and Southwest Fisheries Science Centers covers much of the range of these species' historical distributions
- Focus is on anadromous populations in California, Idaho, Oregon, and Washington
- Some studies in Alaska

Three examples for protected species

- 1. Evolutionary demography of steelhead
 - All listed steelhead DPSs have resident fish
 - Conclusions about viability of steelhead DPSs depend on how one considers resident fish
- 2. Effects of the Columbia River hydropower system on salmon life history
 - Changes in selective regimes from pristine rivers to a series of reservoirs connected with bypass facilities
 - Millions spent on minimizing the lethality of dams to salmon, but little spent on evaluating which fish survive

Three examples for protected species

- 3. Consequences of climate change for salmon
 - Likely to alter seasonal timing of reproduction and migration away from optima
 - Could increase extinction risk or yield range shifts
 - Capacity to respond depends on genetic diversity in life history and the nature of climate change selection

The hybrid migratory strategy of *O. mykiss*

- Growth, size at age and morphology influence migratory trajectories
- These traits are heritable and map to genomic sites known to be associated with migration propensity
- Resident and migratory paths may be canalized

 How do residents contribute to viability of anadromous populations? Can resident fish help to conserve steelhead?

Steelhead life history in two coastal streams

- Different solutions to a problem
- Residents produce seaward migrants; steelhead can produce residents
- Disparate age structures
- Low rates of iteroparity

Snow Creek Sashin Creek

Age structure

Age 3	4%	0%
Age 4	87%	36%
Age 5	9%	53%
Age 6	0%	11%

Demography

Smolts/spawner	30	13
Marine survival	5%	11%
Recruits/spawner	1	1
Iteroparity	2%	5%

J McMillan

Size and migration timing of steelhead smolts

- Smolt length (LG) and migration timing (OUT) are heritable but uncorrelated
- Older smolts are larger and leave earlier

Residents produce migrants – but at what cost?

- Residents can retain the ability to produce smolts in the face of selection
- But they have much higher marine mortality
- How do migrating offspring of residents affect anadromous productivity?

Snake River fall Chinook salmon (O. tshawytscha)

ESA listed 1992

Life history changes in Snake River fall Chinook salmon

- Historically, nearly 100% subyearling migrants
- Recently, evidence for selection favoring yearling migrants (Williams et al. 2008)
- What happens if dams are removed?
 - If LH Δ reflects plasticity, perhaps not a problem
 - If LH Δ reflects evolution, population could be maladapted to its restored ecosystem

 Important to maintain genetic diversity in age of seaward migrants

Changes in migrant age: plasticity or evolution?

- The influence of dams on migrant survival has increased the frequency of yearling migrants
- This shift may reflect a plastic response alone to cooler temperature
- It could also reflect an evolutionary response to selection on smolt age (size) or growth

Myers & Hutchings 1986; Thorpe et al. 1998

Heritability of smolt LH in fall Chinook salmon

- 3 year spawning matrix of known crosses (NPTH, Idaho)
- Parentage analysis to correlate parent with offspring LH
- Subyearling parents generally produced faster growing offspring than yearling parents

Parents reared as yearlings in H produced fastest-growing

offspring

h² of offspring growth rate

 Evolution might be involved in the observed life-history response

Fraser River, B.C. sockeye salmon (O. nerka)

Temperature and flow patterns in upper Fraser R.

Est. survival functions

MacDonald et al. (2010)

Genetic rescue is feasible if h² is high enough

Reed et al. (2011)

Increase in mean river temperature by 2100 (°C)

— heritability = 0 — heritability = 0.25 — heritability = 0.5 — heritability = 0.75

Some key findings

- 1. Evolutionary demography of steelhead
 - Life history traits are heritable and under selection
 - Success of anadromous migrants depends on sufficient genetic variability but also on nature of past selection
- 2. Effects of the Columbia River hydropower system on salmon life history
 - Altered selective regimes have resulted in heritable lifehistory changes that can evolve in a few generations
 - These changes could be maladaptive in historical or restored habitat

Some key findings

- 3. Consequences of climate change for salmon
 - Climate change will probably narrow optimal windows for migration and reproduction
 - It will likely shift the seasonal timing of these optima as well
 - Ability of fish to adapt depends on the evolutionary capacity to respond to environmental change
 - † temperature tolerance?
 - Δ phenology or dispersal

Related life-history studies at NWFSC & SWFSC

- Evolution of smolt age in hatcheries (Berejikian, Tue PM)
- Evolution of age at spawning in hatcheries (Ford, Tue PM)
- Climate change effects on adult migration timing (Crozier, Mon PM)
- Residency and anadromy in O. mykiss (Pearse, Satterthwaite)
- Epigenetics/genomics and LH expression (Swanson & Nichols)
- Phenotypic plasticity and cue reliability (Reed et al.)
- Fisheries- and predator-induced evolution (Hard et al.)
- Evolutionary response to climate change (Audzijonyte & Waples)

Other genetic research on protected species

- Current and historical population structure
- Mixed-stock fishery analysis
- Genetic effects of captive culture (domestication selection)
- Wild pedigree reconstruction and parentage assignment
- Effective population size and rates of genetic change
- Genetic identification of killer whale prey

Strengths

- Broad technical expertise in dedicated staff
 - Salmonid biology, ecology & evolution
 - Molecular, population and quantitative genetics & genomics
 - Experimental design & analysis
- Experience bridging evolutionary & ecological approaches
- Diverse collaborations with academics, government researchers, NGOs, stakeholders & independent scientists
- Technical products address NOAA's stewardship mission and scientific support is responsive to NOAA's administrative & regulatory needs

Challenges

- Many protected species are long-lived and difficult to study
- Suitable experiments are logistically challenging, often protracted, and expensive
- Our ability to collect critical information is being outpaced by the development of tools that can help us to answer the important questions
- Increasing FTE labor costs constrain operating funds
- Extensive reliance on contract labor; workforce demographics pose future challenges
- Travel restrictions make it difficult to collaborate efficiently between Centers and to sustain long-term field work

Opportunities

- Investigate the nature of selection on life history in threatened species and their responses to it
- Increase attention to evolutionary issues in protected species conservation (e.g., human-induced evolution)
- Enhance ability to address emerging questions with innovative, interdisciplinary approaches
- A few research questions to explore:
 - How much standing diversity is needed to maintain adaptive potential in threatened species?
 - How do we link evolutionary processes to population dynamics?
 - Can phenotypic plasticity ameliorate genetic adaptation to strong directional selection (e.g., from climate change)?

Acknowledgments

- Krista Nichols, Barry Berejikian, Penny Swanson, Mike Ford, Anna Elz, Jim Faulkner, Katy Doctor, Don van Doornik, Linda Park, Jim Myers, Paul Moran, David Teel & Gary Winans (NWFSC)
- Frank Thrower, John Joyce & Andy Gray (AFSC)
- Devon Pearse, Carlos Garza & Sean Hayes (SWFSC)
- Todd Seamons, Thom Johnson & Mark Schuck (WDFW)
- Daniel Schindler, Kerry Naish, Lorenz Hauser & Tom Reed (UW)
- Nez Perce Tribal Hatchery & USFWS
- Ben Hecht & Matt Hale (Purdue)
- Many other collaborators from NOAA, UW, OSU, CDFO, WDFW, ODFW, CRIFTC & tribal agencies

FIN

Extra slides (for questions/discussion) here

Abundance and extinction risk of Snow Creek steelhead

- No definitive evidence for declining productivity, but abundance has fallen
- Future abundance is unpredictable

Abundance and extinction risk of Sashin Creek steelhead

- No evidence for declining productivity; abundance is low and stable
- Resident fish are abundant, but it isn't known how many smolts they produce

Evolution of life history in wild steelhead

- Size and run timing can and do respond to selection
- Adult phenology and stream residence covary and influence RS

Architecture of juvenile O. mykiss life history

- Growth, size and shape are heritable and highly correlated
- QTL for these traits map to genomic sites known to influence migration propensity
- Resident and migratory trajectories appear to be highly canalized

Hecht et al. (2015)

Steelhead smolt Quantitative Trait Loci

Omy12

QTL for traits associated with smolt metamorphosis map to specific linkage groups

Size transitions can drive population dynamics

 Population growth is sensitive to the way that size influences annual marine survival, fertility and reproductive success

Plasticity and persistence

- Plasticity allows greater likelihood of persistence, particularly in highly unpredictable environments
- However, the environmental cue must be sufficiently reliable

Reed et al. (2010)

